What is Welding? - Definition, Processes and Types of Welds
What is Welding? - Definition, Processes and Types of Welds
Joining Metals
As opposed to brazing and soldering, which do not melt the base metal, welding is a high heat process which melts the base material. Typically with the addition of a filler material.
Link to Laililai
Heat at a high temperature causes a weld pool of molten material which cools to form the join, which can be stronger than the parent metal. Pressure can also be used to produce a weld, either alongside the heat or by itself.
It can also use a shielding gas to protect the melted and filler metals from becoming contaminated or oxidised.
Joining Plastics
Plastics welding also uses heat to join the materials (although not in the case of solvent welding) and is achieved in three stages.
Firstly, the surfaces are prepared before heat and pressure is applied and, finally, the materials are allowed to cool to create fusion. Joining methods for plastics can be separated into external or internal heating methods, depending on the exact process used.
Joining Wood
Wood welding uses heat generated from friction to join the materials. The materials to be joined are subjected to a great deal of pressure before a linear friction movement creates heat to bond the workpieces together.
This is a fast process which allows wood to be joined without adhesives or nails in a matter of seconds.
Butt Joint
A connection between the ends or edges of two parts making an angle to one another of 135-180° inclusive in the region of the joint.
T Joint
A connection between the end or edge of one part and the face of the other part, the parts making an angle to one another of more than 5 up to and including 90° in the region of the joint.
Corner Joint
A connection between the ends or edges of two parts making an angle to one another of more than 30 but less than 135° in the region of the joint.
Edge Joint
A connection between the edges of two parts making an angle to one another of 0 to 30° inclusive in the region of the joint.
Cruciform Joint
A connection in which two flat plates or two bars are welded to another flat plate at right angles and on the same axis.
Lap Joint
A connection between two overlapping parts making an angle to one another of 0-5° inclusive in the region of the weld or welds.
Welds Based on Configuration
Slot weld
Joint between two overlapping components made by depositing a fillet weld around the periphery of a hole in one component so as to join it to the surface of the other component exposed through the hole.
Weld made by filling a hole in one component of a workpiece with filler metal so as to join it to the surface of an overlapping component exposed through the hole (the hole can be circular or oval).
Based on Penetration
Full penetration weld
Welded joint where the weld metal fully penetrates the joint with complete root fusion. In US the preferred term is complete joint penetration weld (CJP, see AWS D1.1).
Partial penetration weld
Weld in which the fusion penetration is intentionally less than full penetration. In the US the preferred term is partial joint penetration weld (PJP).
Welds Based on Accessibility
Features of Completed Welds
Butt weld
Fillet weld
Parent Metal
Metal to be joined or surfaced by welding, braze welding or brazing.
Filler Metal
Metal added during welding, braze welding, brazing or surfacing.
Weld Metal
All metal melted during the making of a weld and retained in the weld.
The part of the parent metal metallurgically affected by the weld or thermal cutting heat, but not melted.
Fusion Line
Boundary between the weld metal and the HAZ in a fusion weld. This is a non-standard term for weld junction.
Weld Zone
Zone containing the weld metal and the HAZ.
Weld Face
The surface of a fusion weld exposed on the side from which the weld has been made.
Weld Root
Zone on the side of the first run furthest from the welder.
See also:Best weatherstripping/flashing for exterior doors?
If you are looking for more details, kindly visit Outdoor Aluminium Corner Joint.
Weld Toe
Boundary between a weld face and the parent metal or between runs. This is a very important feature of a weld since toes are points of high stress concentration and often they are initiation points for different types of cracks (eg fatigue cracks, cold cracks).
In order to reduce the stress concentration, toes must blend smoothly into the parent metal surface.
Excess Weld Metal
Weld metal lying outside the plane joining the toes. Other non-standard terms for this feature: reinforcement, overfill.
Note: the term reinforcement, although commonly used, is inappropriate because any excess weld metal over and above the surface of the parent metal does not make the joint stronger.
In fact, the thickness considered when designing a welded component is the design throat thickness, which does not include the excess weld metal.
Run (pass)
The metal melted or deposited during one passage of an electrode, torch or blowpipe.
Layer
Stratum of weld metal consisting of one or more runs.
Different processes are determined by the energy source used, with a variety of different techniques available.
Until the end of the 19th century, forge welding was the only method used, but later processes, such as arc welding, have since been developed. Modern methods use gas flame, electric arc, lasers, electron beam, friction and even ultrasound to join materials.
Care needs to be taken with these processes as they can lead to burns, electric shock, damaged vision, exposure to radiation or inhaling of poisonous welding fumes and gases.
There are a variety of different welding process types with their own techniques and applications for industry, these include:
1. Arc
This category includes a number of common manual, semi-automatic and automatic processes. These include metal inert gas (MIG) welding, stick welding, tungsten inert gas (TIG) welding also know as gas tungsten arc welding (GTAW), gas welding, metal active gas (MAG) welding, flux cored arc welding (FCAW), gas metal arc welding (GMAW), submerged arc welding (SAW), shielded metal arc welding (SMAW) and plasma arc welding.
These techniques usually use a filler material and are primarily used for joining metals including stainless steel, aluminium, nickel and copper alloys, cobalt and titanium. Arc welding processes are widely used across industries such as oil and gas, power, aerospace, automotive, and more.
2. Friction
Friction welding techniques join materials using mechanical friction. This can be performed in a variety of ways on different welding materials including steel, aluminium or even wood.
The mechanical friction generates heat which softens the materials which mix to create a bond as they cool. The manner in which the joining occurs is dependant on the exact process used, for example, friction stir welding (FSW), friction stir spot welding (FSSW), linear friction welding (LFW) and rotary friction welding (RFW).
Friction welding doesn't require the use of filler metals, flux or shielding gas.
Friction is frequently used in aerospace applications as it is ideal for joining otherwise 'non-weldable' light-weight aluminium alloys.
Friction processes are used across industry and are also being explored as a method to bond wood without the use of adhesives or nails.
3. Electron Beam
This fusion joining process uses a beam of high velocity electrons to join materials. The kinetic energy of the electrons transforms into heat upon impact with the workpieces causing the materials to melt together.
Electron beam welding (EBW) is performed in a vacuum (with the use of a vacuum chamber) to prevent the beam from dissipating.
There are many common applications for EBW, as can be used to join thick sections. This means it can be applied across a number of industries from aerospace to nuclear power and automotive to rail.
4. Laser
Used to join thermoplastics or pieces of metal, this process uses a laser to provide a concentrated heat ideal for barrow, deep welds and high joining rates. Being easily automated, the high welding speed at which this process can be performed makes it perfect for high volume applications, such as within the automotive industry.
Laser beam welding can be performed in air rather than in a vacuum such as with electron beam joining.
5. Resistance
This is a fast process which is commonly used in the automotive industry. This process can be split into two types, resistance spot welding and resistance seam welding.
Spot welding uses heat delivered between two electrodes which is applied to a small area as the workpieces are clamped together.
Seam welding is similar to spot welding except it replaces the electrodes with rotating wheels to deliver a continuous leak-free weld.
TWI has one of the most definitive ranges of services.
22 possible causes for porosity in welding
Weld metal porosity is not a welcome sight in a weld bead, but it shows up all too often.
Porosity is weld metal contamination in the form of a trapped gas. Shielding gases or gases released as a result of the torch being applied to treated metal are absorbed into the molten metal and released as solidification takes place. In other instances, the shielding gas doesn’t completely reach the weld pool and the atmospheric air adversely affects the weld bead.
Evidence of porosity comes in the shape of rounded holes, called spherical porosity (see Figure 1). If the holes are elongated, the defect might be called wormholes or piping.
Because porosity has acceptable levels, it is infrequently considered a serious defect. However, depending on the welding code or standard, porosity might be cause for a weld reject.
Luckily, porosity is a defect that has an approximate 90 percent prevention rate. With a few tips for identifying possible causes of the porosity, a welder quickly can turn reject parts into weldments that are acceptable under most welding codes.
Possible Problems Related to Porosity in Welding
From most common to least, let’s look at some of the causes of porosity in welds:
- The cylinder is out of gas. This happens quite often.
- Air or a draft of some kind disturbs the delivery of the shielding gas during the welding process. Overhead or floor fans even as far as 25 feet away can wreak havoc on the gas delivery. Welders also need to be aware of open doors and air being discharged from machinery. These drafts, if more than 4 to 5 miles per hour, can affect shielded metal arc welding (SMAW) and flux-cored arc welding (FCAW) operations.
- The presence of moisture can lead to problems. It might be simple water or morning dew, but also could be condensation from welding on heavy plate and lap joints, which might occur particularly when temperatures reach below 50 degrees F. The easy fix is to preheat the metal to 200 to 220 degrees F to evaporate the moisture.
- Plugged or restricted gas metal arc welding (GMAW) gun nozzles—typically from weld spatter—impede the delivery of shielding gas. To rectify this obstacle, the welder needs to look at the nozzle opening before starting a weld. This double-check might prevent weld spatter from falling into the weld.
- The weld nozzle is held too far away from the weld puddle. The volume of shielding gas reaching the weld is diminished, and dilution of the shielding gas with the atmosphere severely affects the weld.
- The GMAW gun is laid at an angle that will spread the gas flow out and actually suck in the atmosphere from the back side, opposite the nozzle direction. A 5- to 15-degree angle, perpendicular to the joint, is an acceptable angle for forehand or backhand methods with GMAW or FCAW guns and SMAW electrodes.
- Paint, grease, oil, glue, and sweat release large volumes of gas when exposed to arc welding temperatures. This is especially true with solid-wire GMAW and gas tungsten arc welding (GTAW), but FCAW and SMAW processes are vulnerable as well. The flux makeup was not designed to handle such contamination.
- When mill scale and rust are welded over, decomposition gases are formed, and oxidation begins, which can involve the presence of moisture. The strong possibility of cold lapping and lack of fusion at the weld toe also exists. When a metal oxidizes, it is no longer truly a metal and can’t be expected to respond to welding the same as a metal, especially when welding flux is not used.
- Plating compounds with zinc, such as in the galvanization process, can create a problem. Zinc melts at approximately 420 degrees F. At welding temperatures far in excess of 2,000 degrees F, zinc changes from a solid to a gas in a fraction of a second. Also, zinc dust is a byproduct of the welding process. The release of both gases and dust make welding galvanized metal an unpleasant experience. (In an effort to prevent letters and calls of protest, let me say electrodes and welding procedures have been developed to weld galvanized material successfully. However, training and lots of practice are absolutely necessary to overcome the presence of all that trapped gas.)
- SMAW electrodes, FCAW electrodes, and submerged arc welding (SAW) flux absorb moisture in an unprotected environment. To address moisture in the welding process, codes are pretty clear about the use of dryers and ovens to store these materials. SAW flux in particular is like a sponge. Once the container is opened, the welder should store the package according to the manufacturer’s directions.
- The gas flow is too high. Gas flow of 50 to 60 cubic feet per hour (CFH) at the GMAW nozzle and 20 to 30 CFH at the GTAW torch should be plenty. If not, ask why. Wide-open gas flow at the nozzle actually creates turbulence and can pull outside air into the weld zone. Additionally, it’s a terrible waste of gas and adds unnecessary cost to the project. The only exception might be if the shielding gas contains more than 50 percent helium.
- A pinched or smashed gas hose doesn’t deliver the shielding gas properly. If the gas hose is more than 20 ft. long, the possibility of it kinking is pretty good.
- Improper use of antispatter compounds, sprays, or gels can be a major contributor to porosity. When used in excess, the antispatter material becomes a contaminant, boiling into a gas when exposed to the high temperatures of the welding arc. Also, jamming the GMAW gun into a container of antispatter gel can result in the gel dripping back into the weld puddle. An operator should use the anti- spatter material properly or not at all.
- Weld filler metals contaminated with paint, grease, oil, tape, and glue can release gases when exposed to the very hot welding arc. Even dirty gloves used during GTAW can contaminate the consumables. Cleaning solid wire and flux-cored wire with wire wipes and GTAW fillers with steel wool is a good idea.
- Contaminated GMAW gun liners can introduce unwanted elements to the weld pool. All the grease, oil, dust, and dirt found in the shop environment collects on the wire and ends up in the gun’s whip liner. Stainless steel and high-nickel-alloy wires are especially susceptible to attracting these contaminants.
- GMAW right on the edge of an outside corner joint might create problems given the awkward position of the nozzle. The nozzle often does not cover the joint properly, causes turbulence, and draws in outside air into the weld joint.
- If the weld joint is open at the root, it will suck in air from the back side. Unprotected liquid metal can absorb air easily.
- The welding gas itself could be contaminated. If the welding gas is a suspect, the shop needs the gas supplier to certify that the gas has the correct dew point.
- A contaminated gas hose could be a culprit, in particular, hoses that have been used for other activities prior to being used in a welding application. In one real-world example, a hose was grabbed from a storeroom to repair a cut hose that was attached to the wire feeder. Unfortunately, a bug had built a nest in the hose while it was sitting undisturbed in the storeroom. In another example, an air hose that was previously used as an air line for a tool on a line with an oil lube system on it was quickly connected to welding equipment only to find out later that the hose was full of air tool oil.
- Damaged O-ring seals on the GMAW gun whip where it plugs into the wire feeder or the GTAW torch cap where it screws into the torch could introduce unwanted air into the welding process.
- Cut or burnt hose anywhere from the regulator flowmeter to the connection at the feeder could create issues.
- A defective gas solenoid at the wire feeder or the GTAW machine is a possible contributor to conditions that create porosity.
Prevent Porosity in Welding with Proper Procedure
From a procedural point of view, a welder should keep these two scenarios in mind:
- When beginning a weld in a tight corner, an operator will need more than the little burst of shielding gas than is released at the start of the weld. That little burst is seldom enough to purge out the corner pocket before the weld puddle starts.
- The purge of the gas line after a break or lunch period often results in a shield gas-free start. The welder should pull the trigger for a second or two, cut off the wire, and go.
Welders working with high-strength, low-alloy steels, such as A514, A588, and A709, should be aware of porosity caused by the release of hydrogen. That gas gets trapped in the steel during solidification and can lead to hydrogen-induced cracking. These cracks develop as time goes on, and catastrophic failure occurs when metal fatigue reaches a certain level.
Obviously, all of the 22 possible causes of weld metal porosity won’t apply when it comes to defect investigation. However, it might make sense to take steps to address the most common possible causes.
Checking for system leaks is easy. At the start of the day, the welder should open the cylinder handwheel, pressurize the system for 15 to 20 seconds, turn the cylinder off, and watch the regulator dial. If the dial stays put, the welder is ready to ignite the arc. If it starts to coast down in approximately one or two minutes, a leak is present somewhere, and the welder needs to find it.
Another thing worth mentioning is that the type or position of the porosity is often a key to what is causing it. A copy of AWS B1.11, “Guide for the Visual Examination of Welds,“ explains in detail what the probable cause is for the porosity.
For more stainless steel balustrade fittingsinformation, please contact us. We will provide professional answers.
- Previous: Best weatherstripping/flashing for exterior doors?
- Next: None